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A Tsunami Forecast Model for Keauhou, Hawaii

Liujuan Tang

Abstract

This study describes the development, validation, and testing of a tsunami forecast model
for Keauhou, Hawaii. Based on the Method of Splitting Tsunamis (MOST) model, the
forecast model is capable of simulating four hours of tsunami wave dynamics at a
resolution of 1 arc sec (~30 m) in about 14 minutes of computational time. A reference
inundation model of higher resolution of 1/3 arc-sec (~10 m) was also developed in
parallel to provide modeling references for the forecast model. Both models were tested
for seventeen past tsunamis and a set of eighteen simulated magnitude 9.3 tsunamis.

The numerical consistency between the model outputs on the amplitude time series at
warning point, maximum amplitude, and current in the forecast area, are good in general.
The difference in the maximum amplitude at the warning point between the reference and
forecast models is within 17 cm when it is under 1 m (except the 1946 tsunami, which
shows a 31 cm difference for a maximum amplitude of 65 cm), and less than 20% when it
is greater than 1 m (except the magnitude 9.3 tsunamis from Central Aleutian,
Kamchatka and Izu subdection zones, from which the difference can be 33%).

The simulated magnitude 9.3 tsunamis show an impressive local variability of tsunami
amplitudes at Keauhou and indicate the complexity of forecasting tsunami amplitudes at
a coastal location. It is essential to use high-resolution models in order to provide
accuracy that is useful for coastal tsunami forecast for practical guidance.

The study highlights that tsunamis from Japan, Kamchatka, Northern Tonga (Samoa), Isu,
Southern Chile, East Philippines, and Central Aleutian subduction zones can potentially
generate large amplitude waves in Keauhou. It also shows the water front at Kahaluu
Beach Park and at the end of Keauhou bay are under high flooding risk.

1 Background and Objective

The National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami
Research at NOAA’s Pacific Marine Environmental Laboratory (PMEL) has developed
a tsunami forecasting system for operational use by NOAA’s two Tsunami Warning
Centers located in Hawaii and Alaska (Titov et al., 2005; Titov, 2009). The forecast
system combines real-time deep-ocean tsunami measurements from Deep-ocean
Assessment and Reporting of Tsunami (DART) buoys (Gonzalez et al., 2005; Bernard et
al., 2006, Bernard and Titov, 2007) with the MOST model, a suite of finite difference
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numerical codes based on nonlinear long wave approximation (7itov and Synolakis, 1998;
Titov and Gonzalez, 1997; Synolakis, et al., 2008) to produce real-time forecasts of
tsunami arrival time, heights, periods, and inundation. To achieve accurate and detailed
forecast of tsunami impact for specific sites, high-resolution tsunami forecast models are
under development for United States coastal communities at risk (Tang et al., 2008
2009%). The resolution of these models has to be high enough to resolve the dynamics of a
tsunami inside a particular harbor, including influences of major harbor structures such as
breakwaters. These models have been integrated as crucial components into the forecast
system.

Presently, a system of 41 DART buoys (32 U.S.-, 1 Russian-,1 Chilean-, and 6
Australian- owned) is monitoring tsunami activity in the Pacific Ocean, as shown in
Figure 1. Globally, the network consists of 52 tsunameters deployed in the Atlantic
Ocean, the Pacific Ocean, Caribbean, and the Gulf of Mexico. The precomputed
propagation models currently have 1,106 scenarios to cover Pacific tsunami sources
(1,691 globally), and the high-resolution forecast inundation models are now set up for
43 U.S. coastal communities. The fully implemented system will use real-time data from
the DART network to provide high-resolution tsunami forecasts for at least 75
communities in the U.S. by 2013 (Titov, 2009). Since its first testing in the 17 November
2003 Rat Island tsunami, the forecast system has produced experimental realt-ime
forecasts for 17 tsunamis in the Pacific and Indian oceans (Titov et al.,

2005; Wei et al., 2008; Titov, 2009; Tang et al., 2011). The forecast methodology has
also been tested with the data from nine additional events that produced the deep-ocean
data.

Two recent tsunamis, the 2009 Samoa and 2011 Japan tsunamis, caused flooding and
damaging in the Kahaluu-Keauhou area, highlighting the need of a forecast flooding
model for this area. The report describes the development, testing, and applications of the
Keauhou forecast model. The objective is to provide NOAA’s Tsunami Warning Centers
the ability to assess danger posed to Keauhou following tsunami generation in the Pacific
Ocean Basin and to provide accurate and timely forecasts to enable the community to
respond appropriately. A secondary objective is to explore the potential tsunami impact
from earthquakes at major subduction zones in the Pacific using the developed flooding
model.

The report is organized as follows: Section 2 briefly introduces NOAA’s tsunami forecast
methodology, Section 3 describes the model development, and Section 4 presents the
results and discussion, which includes sensitivity of the forecast model to model setup,
verification, and testing for past and simulated tsunamis. A summary and conclusion are
provided in section 5.

2 Forecast Methodology

NOAA'’s real-time tsunami forecasting scheme is a process comprised of two steps:
(1) construction of a tsunami source via inversion of deep ocean DART observations with
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pre-computed tsunami source functions; and (2) coastal predictions by running high-
resolution forecast models in real time (7itov et al., 1999; Titov et al., 2005; Tang et al.,
2009%). The DART-constrained tsunami source, the corresponding offshore scenario from
the tsunami source function database, and high-resolution forecast models cover the
entire evolution of earthquake-generated tsunamis, i.e., generation, propagation, and
coastal inundation, providing a complete tsunami forecast capability.

2.1 Construction of A Tsunami Source Based on DART Observations and
Tsunami Source Functions

Several real-time data sources, including seismic data, coastal tide gage, and deep-ocean
data have been used for tsunami warning and forecast (Satake et al., 2008; Whitmore,
2003; Titov, 2009). NOAA’s strategy for the real-time forecasting is to use deep-ocean
measurements at DART buoys as the primary data source due to several key features. (1)
The buoys provide a direct measure of tsunami waves, unlike seismic data, which are an
indirect measure of tsunamis. (2) The deep ocean tsunami measurements are in general
the earliest tsunami information available, since tsunamis propagate much faster in deep
ocean than in shallow coastal area where coastal tide gages are used for tsunami
measurements. (3) Compared to coastal tide gages, DART data with a high signal to
noise ratio can be obtained without interference from harbor and local shelf effects. (4)
Wave dynamics of tsunami propagation in deep ocean is assumed to be linear (Liu, 2009).
This linear process allows application of efficient inversion schemes.

Time series of tsunami observations in deep-ocean can be decomposed into a linear
combination of a set of tsunami source functions in the time domain by a linear least
squares method. We call coefficients obtained through this inversion process tsunami
source coefficients. The magnitude computed from the sum of the moment of tsunami
source functions multiplied by the corresponding coefficients is referred as the tsunami
moment magnitude (Tys,), to distinguish from the seismic moment magnitude M,,, which
is the magnitude of the associated earthquake source. While the seismic and tsunami
sources are in general not the same, this approach provides a link between the
seismically-derived earthquake magnitude and the tsunami observation-derived tsunami
magnitude.

During real-time tsunami forecast, seismic waves propagate much faster than tsunami
waves, so the initial seismic magnitude can be estimated before the DART measurements
are available. Since time is of the essence, the initial tsunami forecast is based on the
seismic magnitude only. The Tjs, will update the forecast when it is available via DART
inversion using the tsunami source function database.

Titov et al.(1999; 2001) conducted sensitivity studies on far-field deep-water
tsunamis for different parameters of elastic deformation models described in Gusiakov
(1978) and Okada (1985). The results showed source magnitude and location essentially
define far-field tsunami signals for a wide range of subduction zone earthquakes. Other
parameters have secondary influence and can be pre-defined during a forecast. Based on
these results, tsunami source function databases for Pacific, Atlantic, and Indian Oceans
have been built using pre-defined source parameters: length = 100 km, width = 50 km,
slip = 1 m, rake = 90, and rigidity = 4.5 x 10'° N/m”. Other parameters are location-
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specific; details of the databases are described in Gica et al. (2008). Each tsunami source
function is equivalent to a tsunami from a typical M,, = 7.5 earthquake with defined
source parameters. Figure 1 shows the locations of tsunami source functions in the
Pacific Ocean.

The database can provide offshore forecast of tsunami amplitudes and all other wave
parameters immediately, once the inversion is complete. The tsunami source, which
combines real-time tsunami measurements with tsunami source functions, provides an
accurate offshore tsunami scenario without additional time-consuming model runs.

2.2 Real-time Coastal Predictions by High-Resolution Forecast Models.

High-resolution forecast models are designed for the final stage of the evolution of
tsunami waves: coastal runup and inundation. Once the DART-constrained tsunami
source is obtained (as a linear combination of tsunami source functions), the pre-
computed time series of offshore wave height and depth-averaged velocity from the
model propagation scenario are applied as the dynamic boundary conditions for the
forecast models. This saves the simulation time for basin wide tsunami propagation.
Tsunami inundation is a highly nonlinear process. Therefore a linear combination would
not, in general, provide accurate solutions. A high-resolution model with accurate
bathymetric/topographic data is also required to resolve shorter tsunami wavelengths near
shore. The forecast models are constructed with the MOST model, a finite difference
tsunami inundation model based on nonlinear shallow-water wave equations (7itov and
Gonzalez, 1997). Each forecast model contains three telescoping computational grids
with increasing resolution, covering regional, intermediate, and near-shore areas. Runup
and inundation are computed at the coastline. For example, Figure 2 shows the forecast
model setup for several tsunami forecast models in Hawaii, detailing the telescoping
grids used:

(a) One regional grid of 2-arc-minute (~3600m) resolution covers the main Hawaiian

Islands (Figure 2.a).

(b) Then the Hawaiian Islands are divided into four intermediate grids of 12 to 18 arc

sec (~360 —540m) for four natural geographic areas (Figures 2.b 1-4):

(bl) Ni'ihau, Ka'ula Rock, and Kauai (Kauai complex),
(b2) Oahu,
(b3) Molokai, Maui, Lanai, and Kaho'olawe (the Maui Complex),
(b4) Hawaii.
(c) Each intermediate grid contains 2 arc sec (~60 m) near-shore grids (Figs. 2.c 1-4).

The highest resolution grid includes the population center and tide stations for forecast
verification. The grids are derived from the best available bathymetric/topographic data at
the time of development, and will be updated as new survey data become available.

The forecast models are optimized for speed and accuracy. By reducing the
computational areas and grid resolutions, each model is optimized to provide 4-hour
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event forecasting results in minutes of computational time using one single processor,
while still providing good accuracy for forecasting. To ensure forecast accuracy at every
step of the process, the model outputs are validated with historical tsunami records and
compared to numerical results from a reference inundation model with higher resolutions
and larger computational domains. In order to provide long duration warning guidance
during a tsunami event, each forecast model has been tested to output up to 24-hour
simulations after tsunami generation.

3 Model Development

3.1 Forecast area

The main Hawaiian Islands are the younger and southern portion of the Hawaii
Archipelago. From northwest to southeast, the islands form four natural geographic
groups with shared channels and inter-island shelf, including (1) Ni'ihau, Ka'ula Rock,
and Kauai, (Kauai complex) (2) Oahu, (3) Molokai, Maui, Lanai, and Kaho'olawe, (the
Maui Complex), and (4) Hawaii. Kahaluu-Keauhou is located at the southwest shore of
the Big Island of Hawaii. As of the 2010 Census, it had a resident population of 3549 and
1457 households. Figure 3 presents an aerial photo of this area, and a chart is shown in
Figure 4. The population density data is in Figure 5.

The Island of Hawaii (Big Island) is located at the southeast end of the Hawaii
Archipelago (Figure 2). To its northwest, there is the Maui complex, with the deep
Alenuihaha Channel in between (water depth greater 200m). Gentle slope from 0 to 100
m water depth followed by sudden steep offshore slopes from 100m down to 4000 m
depth characterize the coast of Kahaluu-Keauhou area. From 0 to 100m depth, the slope
is quite gentle, only 0.013. From 100m to 1000m water depth is the steepest offshore
slope of 0.3822, and then 0.15 slope from 1000m to 4000m depth.

No tide station exists in the forecast area. The Kawaihae tide station on the same (west)
coast of the Island is approximately 53 km to the north - the closest station to this area.
At Kawaihae station, the mean range of tide is 0.461m, and the Mean High Water is
0.222 m above Mean Sea Level. Since no tide gage is in the area, a point
(204.03740740°E, 19.5616666 ° N) at 3.6m water depth near the end of Keauhou bay
was chosen as the warning point (Figure 7d).

3.2  Tsunami history and data

The Hawaii Islands have a long history of destructive tsunamis (Pararas-Carayannis,
1969; Soloviev and Go, 1984; Lander and Lockridge, 1989) generated by both distant
and local sources. The descriptions for Keauhou were extracted from the references as
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follows. The height in Pararas-Carayannis (1969) refers to maximum runup height or
amplitude. Walker (2004) summarized the runups on the Island of Hawaii for the 1946,
1952, 1957, 1960 and 1964 tsunamis (Figure 5).

The earliest recorded tsunami damage at Keauhou was on April 3, 1868, when a
magnitude 7-7.5 earthquake occurred in S.E. Hawaii. “Right after the quake ended, the
sea inundated a to the two basaltic columns on the road to Keauhou; all buildings were
swept away” (Pararas-Carayannis, 1969).

On June 15, 1896, an earthquake at Sanriku, Japan produced a 9.1 m high tsunami at
Keauhou (Pararas-Carayannis, 1969).

On August 9,1901, an earthquake at Rikuchu, Japan created a tsunami which swept a
house away at Keauhou. Kailua was flooded. No disturbance was noticed elsewhere in
the Hawaiian Islands (Pararas-Carayannis, 1969).

On April 1, 1946, a 4 m high tsunami was observed for the Unimak earthquake
(Pararas-Carayannis, 1969).

On March 17, 1952, an earthquake at Hokkaido, Japan produced a 0.9 m high tsunami
at Keauhou (Pararas-Carayannis, 1969).

On March 9, 1957, a 2.1m high tsunami was observed at Keauhou for the Andreanof
Island earthquake (Pararas-Carayannis, 1969).

On May 22, 1960, a 3.7 m high tsunami was observed at Keauhou for the Chile
earthquake (Pararas-Carayannis, 1969).

On September 29, 2009, the Samoa tsunami flooded the Parking area near the
Keauhou Boat Ramp.

On March 11 2011, the Japan tsunami hit Keauhou bay hard. Water slammed into the
end of the Keauhou bay, destroying Keauhou Yacht Club and severely damaging three
ocean sports activity offices (Bracken, 2011). “Well into the day on Friday, surges
continued to sweep over the road, invade nearby structures and throw fish far back up
onto land” (Rizzuto, 2011). The Keauhou Boat Ramp and Keauhou Pier were also
damaged. The Kahalulu Beach Park was flooded, with rocks and debris left everywhere.
The water also undermined a small pavilion when waves crashed over the top (Bracken,
2011).

As an area that has repeatedly been damaged and flooded by tsunamis, Keauhou is in
need of a forecast model to aid site-specific evacuation decisions.
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3.3  Bathymetry and Topography

Tsunami inundation modeling requires accurate bathymetry in coastal area as well as
high resolution topography and bathymetry in the near-shore area. Two gridded digital
elevation models (DEMs), one at medium resolution (6 arc sec) for Hawaiian Islands and
a high resolution (1/3 arc sec) DEM for Keauhou, were developed.

3.3.1 Hawaiian DEM in 6-arc-sec resolution

The 6” Hawaiian DEM was developed at NOAA center for tsunami research in 2007.
The same grid has been used for the forecast model developments for Hilo, Kahului,
Honolulu, Pearl Harbor, and Lahaina (Tang et al, 2009; 2010). The grid was compiled
from several data sources; Figure 7a is an overview of the spatial extents of each data
source used. In areas where multiple datasets overlapped, higher-resolution and newer
datasets were generally preferred, and superseded datasets were used for comparison and
verification. An overview of the data sources used was, in general, the data sources listed
first superseded data sources listed later when they overlapped.

Source details for the datasets incorporated into the model grids:

* Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX), US
Army Corps of Engineers, Mobile District. ~Online reference:
http://shoals.sam.usace.army.mil/hawaii/pages/Hawaii_Data.htm.

* Monterey Bay Aquarium Research Institute (MBARI) Hawaii Multibeam Survey,
Version 1. Online reference: http://www.mbari.org/data/mapping/hawaii/.

* USGS  Pacific Seafloor = Mapping  Project. Online  reference:
http://walrus.wr.usgs.gov/pacmaps/data.html.

* Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 1998-1999
multibeam bathymetric surveys. Published in: Takahashi, E., et al., eds. (2002):
Hawaiian Volcanoes: Deep Underwater Perspectives. American Geophysical
Union Monograph 128.

JAMSTEC trackline data was recorded by the R/V Mirai during transits near in
1999 and 2002. Online reference: http://www.jamstec.go.jp/mirai/index eng.html.

* United States Army Corps of Engineers (USACE), Honolulu District. Online
reference: http://www.poh.usace.army.mil/.

* NOAA National Geophysical Data Center (NGDC). Online reference:
http://www.ngdc.noaa.gov/mgg/gdas/gd sys.html.

* NOAA National Ocean Service (NOS). Sounding points were digitized from NOS
nautical charts 19347, 19358, 19359, 19364, 19366, 19342, 19381, and 19324.
Sounding data from electronic chart (ENC) 19357 was used. This data was
included in relatively shallow regions where other data sources were sparse or
unavailable, or for quality control of other sources.

* Smith, W. H. F., and D. T. Sandwell, Global seafloor topography from satellite
altimetry and ship depth soundings, Science, v. 277, p. 1957-1962, 26 Sept., 1997.
Online reference: http://topex.ucsd.edu/WWW _html/mar_topo.html.

* USGS Geological Long-Range Inclined Asdic (GLORIA) surveys. Online data
reference: http://walrus.wr.usgs.gov/infobank/
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* NOAA Coastal Services Center. http://www.csc.noaa.gov/. The IfSAR
topographic data was collected and processed for CSC by Intermap Technologies
Inc. The data is subject to a restrictive license agreement and is not publicly
available.

¢ USGS National Elevation Dataset. Online reference: http://seamless.usgs.gov/

The SHOALS LIDAR project, which provides high-resolution unified topographic and
bathymetric data for near-shore areas of several Hawaiian Islands, including all of Maui,
was essential to accurate modeling of reef and intertidal regions where conventional
bathymetric survey data is usually coarse or unavailable. Quality data in this region is
especially essential because bathymetric inaccuracies have great impact on tsunami wave
dynamics in shallow water. The 2005 NOAA CSC IfSAR survey of Maui provided
similarly valuable high-resolution topography for the entire island, enabling greater
confidence in predicting inundation extents. The USGS National Elevation Dataset
(NED) was used on other islands outside of the primary study area.

High-resolution gridded datasets derived from multibeam surveys are available for many
parts of the archipelago and were used wherever available. In deep water where high-
resolution multibeam data were not available, the grid was developed by interpolation of
a combination of USGS GLORIA surveys and the Smith and Sandwell two-minute global
seafloor dataset.

All selected input datasets were converted to the mean high water (MHW) vertical datum,
as necessary. Bathymetry datasets were converted from the survey tidal datum (usually
MLLW or MSL) using offset surfaces interpolated from NOS tide gauges at Kahului,
Kawaihae (Hawaii), and Kaunakakai (Molokai). The CSC IfSAR topographic data as
obtained was vertically referenced to the GRS80 ellipsoid. It was converted to MHW
using an offset surface interpolated from seven National Geodetic Survey (NGS)
benchmark stations on Maui that had ellipsoid and tidal heights recorded.

Raw data sources were imported to ESRI ArcGIS-compatible file formats. Horizontal
positions were reprojected, where necessary, to the WGS84 horizontal geodetic datum
using ArcGIS. In the point datasets, single sounding points that differed substantially
from neighboring data were removed. Gridded datasets were checked for extreme values
by examination of contour lines and, where available, by comparison between multiple
data sources.

To compile the multiple data sources into a single grid, subsets of the source data were
created in the priority order described above. A triangulated irregular network (TIN) was
created from the detided vector point data (geodas, usace, csc_lidar). Also added to the
TIN were points taken from the edges of the gridded data regions to ensure a smooth
interpolated transition between areas with different data sources. This TIN was linearly
interpolated using ArcGIS 3D Analyst to produce intermediate 1 arc sec and 6 arc sec
raster grid. The gridded datasets were then bilinearly resampled to these resolutions and
overlaid on top of the intermediate grids.
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3.3.2 Keauhou DEM in 1/3-arc-sec resolution

A high-resolution DEM in 1/3-arc-sec (~10m) was developed for the Keauhou area by
the National Geophysical Data Center (Carignan et al., 2011). The DEM was generated
from diverse digital datasets in the region (grid boundary and sources shown in Figure
7b). The topographical Lidar data from State of Hawaii Civil Defencse /FEMA and HI
DBEDT (Department of Business, Economic Development & Tourism) have
approximately 1 m special resolution. The detail of the data sources and methodology
used in developing the Keauhou DEM can be found in (Carignan et al., 2011).

The bathymetry and topography used in the development of this forecast model
were based on the digital elevation model provided by the National Geophysical Data
Center, and the author considers it to be a good representation of the local
topography/bathymetry. As new digital elevation models become available, forecast
models will be updated and report updates will be posted
at http://nctr.pmel.noaa.gov/forecast_reports/.

3.4  Model Setup

By sub-sampling from the DEMs described in Section 3.3, two sets of computational
grids were derived for Keauhou, a reference inundation model (Figure 8) and the
optimized forecast model (Figure9). The reference grids consist of three levels of
telescoped grids with increasing resolution. The regional grid covers the major Hawaiian
Islands (Fig. 8a), and the coastal grids cover the Island of Hawaii (Figure 8b). Run-up
and inundation simulations are computed on the coastline (Fig. 8c). The optimized
forecast model has three levels of telescoped grids (Fig ure 9). Grid details at each level
and input parameters are summarized in Table 3.

4 Results and Discussion

4.1 Verification and Testing of the Forecast Model

Since no tide gage data was available at Keauhou, we evaluate the forecast model
performance through comparison of tsunami amplitude time series, maximum amplitude,
and current at the forecast area to the results from the reference model

Both the reference and the forecast models for Keauhou were tested with the
seventeen past tsunamis summarized in Table 2. Figures 10 shows the comparisons of
modeled amplitude time series at the warning point computed by the reference and
forecast models. The computed maximum water elevation above MHW and maximum
current of the seventeen tsunamis are plotted in Figure 11. The 2011 Japan tsunami
generated the largest amplitude at the warning point (1 m) as well as in the forecast area.
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Recorded historical tsunamis provide only a limited number of events, from limited
locations. More comprehensive test cases of destructive tsunamis with different
directionalities are needed to check the stability and robustness for the forecast model.
The same set of eighteen simulated magnitude 9.3 tsunamis as in Tang et al. (2008°,
2009") was selected here for further examination (Table 4). Results computed by the
forecast model are compared with those from the high-resolution reference model in
Table 4, Figures 12 and 13. Both models were numerically stable for all of the scenarios.
Waveforms computed by the forecast model agree well with those from the reference
model (Figure 12). Both models compute similar maximum water elevation and
inundation in the study area (Figure 13). These results indicate the forecast model is
capable of providing robust and stable predictions of long duration for Pacific-wide
tsunamis.

The No. 1 Japan, No. 2 Kamchatka, No. 10 Southern Chile, and No. 12 Northern
Tonga scenarios produced inundation at Keauhou. The computed maximum wave
amplitude reaches 3.6 m at the warning point of the Japan scenario. Tsunami waves in the
study area vary significantly for the eighteen magnitude 9.3 scenarios. These results show
the complexity and high nonlinearity of tsunami waves near shore, which again
demonstrate the value of the forecast model for providing accurate site-specific forecast
details.

4.2 Uncertainty of the forecast results

Figure 14 shows the difference of the maximum wave amplitude at the warning point
between the forecast and reference models for the 35 scenarios, which includes the 17
past tsunamis and 18 simulated M, 9.3 scenarios. In general, the forecast model shows
smaller maximum amplitudes than those from the reference model. The difference of the
maximum amplitude at the warning point between the reference and forecast models is
within 17 cm when it is under 1 m (except the 1946 tsunami, which shows a 31 cm
difference for a maximum amplitude of 65 cm), and less than 20% when it is greater than
I m (except the magnitude 9.3 tsunamis from Central Aleutian, Kamchatka, and Izu
subdection zones, from which the difference can be 33%).

5 Summary and Conclusions

A tsunami forecast model was developed for the coastal community of Keauhou, Hawaii.
The computational grids for the Keauhou forecast model were derived from the best
available bathymetric and topographic data sources. The forecast model is optimally
constructed at a resolution of 1 arc sec (~30 m) to enable a 4 hr inundation simulation in
minutes of computational time. A reference inundation model of higher resolution of 1/3
arc sec (~10 m) was also developed in parallel to provide modeling references for the



Keauhou Forecast Model 13

forecast model. Both models were tested for seventeen past tsunamis and a set of
eighteen simulated magnitude 9.3 tsunamis.

The optimized forecast model can provide a 4-hour site-specified forecast of first wave
arrival, amplitudes, and reasonable inundation limit in minutes after receiving tsunami
source information constrained by deep-ocean DART measurements.

A tsunami could strike Keauhou with large waves from earthquakes on the Japan,
Kamchatka, Northern Tonga, and Southern Chile subduction zones. Attention also needs
to be paid to locations from which the main offshore wave energy propagates towards
Hawaiian Islands, including the Alaska-Aleutian, Canada, Cascadia, South America, and
Vanuatu subduction zones. The water front at Kahaluu Beach Park and area at end of
Keauhou bay are under high flooding risk once inundation occurs in the forecast area.
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Table 1 Tsunami source functions in the Pacific, Atlantic and Indian Oceans.

Source Zone Tsunami source functions
No. Abbr. Name Line/zone Numbers
1 ACSZ Aleutian-Alaska-Canada-Cascadia BAZYXW 184
2 CSSz Central-South American BAZYX 382
3 EPSZ East Philippines BA 44
4 KISZ Kamchatka-Kuril-Japan Trench-Izu Bonin-Marianas-Yap =~ BAZYXW 229
5 MOSZ Manus Ocean Convergence Boundary BA 34
6 NVSzZ New Britain-Solomons-Vanuatu BA 74
7 NGSzZ North New Guinea BA 30
8 NTSZ New Zealand-Kermadec-Tonga BA 81
9 NzZSzZ South New Zealand BA 14
10 RNSZ New Ryukus-Kyushu-Nankai BA 44
11 KISZ Kamchatskii-Bering Source Zone BAZ 13
Subtotal: 1129
12 ATSZ Atlantic BA 214
13 SSSz South Sandwich BAZ 33
Subtotal: 247
14 10SZ Adaman-Nicobar-Sumatra-Java BAZY 307
15 MKSZ Makran BA 20
16 WPSZ West Philippines BA 22
Subtotal: 349

Total: 1725



Table 2 Tsunami sources for past tsunamis.

Earthquake / Seismic info

Tsunami info

USGS CMT Magnitude Tsunami
Event Date Time (UTC) Date Time (UTC) Mw Magnitude1 Subduction Zone Tsunami Source
Epicenter Centroid (CMT)
1946 Unimak 01 Apr 12:28:56 n/a 8.5 8.5 Aleutian-Alaska-Cascadia (ACSZ) 7.5 xb23 +19.7 x b24 + 3.7 x b25
52.75°N 163.50°W
1952 04 Nov 16:58:26.0 n/a 9.0 8.7 Kamchatka-Kuril-Japan-Izu-Mariana-Yap  Tang et al. (2006)
Kamchatka 352.76°N 160.06°E (KISZ)
1957 09 Mar 14:22:31 n/a 8.6 8.7 Aleutian-Alaska-Cascadia (ACSZ) 314 xal5+10.6 xal6 +12.2 x al7
Andreanov 51.56°N 175.39°W
1960 Chile 22 May 19:11:14 n/a ‘9.5 n/a Central-South America (CSSZ) Kanamori & Ciper (1974)
¥38.29°S 73.05°W
1964 Alaska 28 Mar 03:36:00 n/a 392 8.9 Aleutian-Alaska-Cascadia (ACSZ) 15.4 x a34+19.4xa35+ 48.3 x
361.02°N 147.65°W z34+18.3xb34+15.1xb35
1994 East Kuril 04 Oct 13:22:58 04 Oct 13:23:28.5 8.3 8.1 Kamchatka-Kuril-Japan-Izu-Mariana-Yap 9.0 x a20
43.73°N 147.321°E 43.60°N 147.63°E (KISZ)
1996 10 Jun 04:03:35 10 Jun 04:04:03.4 7.9 7.8 Aleutian-Alaska-Cascadia (ACSZ) 24xal5+0.8xal6
Andreanof 51.56°N 175.39°W 51.10°N 177.410°W
2003 Hokkaido 25 Sep 19:50:06 25 Sep 19:50:38.2 8.3 8.0 Kamchatka-Kuril-Japan-Izu-Mariana-Yap ~ 3.6m x (100 x 100km)
41.775°N 143.904°E 42.21°N 143.84°E (KISZ) 109#rake, 20#dip, 230#strike, 25 m depth
2003 Rat Island 17 Nov 06:43:07 17 Nov 06:43:31.0 7.7 7.8 Aleutian-Alaska-Cascadia (ACSZ) 2.81 x bl1l
51.13°N 178.74°E 51.14°N 177.86°E
2006 Tonga 03 May 15:26:39 03 May 15:27:03.7 8.0 8.0 New Zealand-Kermadec-Tonga (NTSZ) 6.6 x b29 (Tang et al., 2008b)
20.13°S 174.161°W 20.39°S 173.47°W
2006 Kuril 15 Nov 11:14:16 15 Nov 11:15:08 8.3 8.1 Kamchatka-Kuril-Japan-Izu-Mariana-Yap ~ °4.0x al2+0.5 xb12+ 2.0 xal3+ 1.5 xb13 (Titov,
46.607°N 153.230°E 46.71°N 154.33°E (KISZ) 2009)
2007 Kuril 13 Jan 04:23:20 13 Jan 04:23:48.1 8.1 7.8 Kamchatka-Kuril-Japan-Izu-Mariana-Yap  -3.2 x b13
46.272°N 154.455°E 46.17°N 154.80°E (KISZ)
2007 Solomon 01 Apr 20:39:56 01 Apr 20:40:38.9 8.1 8.2 New Britain-Solomons-Vanuatu (NVSZ)  12.0 x b10
8.481°S 156.978°E 7.76°S 156.34°E
2007 Peru 15 Aug 23:40:57 15 Aug 23:41:57.9 8.0 8.3 Central-South America (CSSZ) 3.6xa62+5.7xz63+5.3xb62
13.354°S 76.509°W 13.73°S 77.04°W
2009 Samoa 29 Sep 17:48:10 29 Sep 17:48:26.8 8.1 8.2 New Zealand-Kermadec-Tonga (NTSZ) a34x6.4+3.2xc35

15.509°S 172.034°W

15.13°S 171.97°W

' Preliminary source — derived from tsunami source functions and deep-ocean observations
? Lopez and Okal (2006)

? United States Geological Survey (USGS)

* Kanamori and Ciper (1974)

* Tsunami source was obtained in real time and applied to the forecast
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2010 Chile 27 Feb 06:34:14
35.909°S 72.733°W
2011 Japan 11 March 05:46:23

38.322°N 142.369 E

2012 Queen 28 October 03:04:09
Charlotte 52.742°N 132.131°W
Islands

27 Feb 06:35:15.4 8.8
35.95°S 73.15°W
11 March 05:47:32.8 9.1

37.52°S 143.05 E

28 October 7.7
03:04:39.2
52.47°N 132.13°W

8.8

8.8

7.9

Central-South America (CSSZ)

Kamchatka-Kuril-Japan-Izu-Mariana-Yap
(KISZ)

Aleutian-Alaska-Cascadia (ACSZ)

19
a87x 9.68+288 x24.5+a88x15.35+a91x
13.19+292x24.82
34.66x b24 + 12.23 xb25+26.31x
a26+21.27xb26+22.75 xa27+4.98x b27 (Tang et
al., 2011)
0.36x52b+4.3x51a



Table 3 MOST setups of Keauhou reference and forecast models.

Grid Region Reference Model Forecast model
Coverage Cell Time Coverage Cell Time
Lon. (°E) Size  Step Lon. (°E) Size Step
Lat. (°N) () (sec) Lat. (°N) () (sec)
A Hawaii 199.0 - 205.98 36 3 A 199 - 205.9667 120 11.05
18.0-23.0 (699 x 500) 18.0317 - 22.9983 (210 x 150)
B BigIsland 202.8483-205.3983 6 045 B 203.8200 - 204.1983 6 0.85
18.6933 - 21.4283 (1531 x 1642) 19.3358 -20.3091 (228 x 585)
C Keauhou 203.9689 -204.070 173 0.1s C 204.0166 - 204.0410 1 0.85
19.4983 - 19.6642 (1729 x 487) 19.5497 - 19.6122 (89 x226)
Minimum offshore depth (m) 1 1
Water depth for dry land (m) 0.1 0.1
Manning coefficient 0.025 0.03
Computational time for a 4-hr simulation ~ 12 hours 14 minutes

Table 4 Sources of the 18 Mw 9.3 synthetic tsunamis and model results at the Keauhou
warning point computed by the reference and forecast models.

f. model | Forecast Model | Location

e
nmax tmax | nmax tmax
(m) (hour) |(m) (hour)

No. Subd. Source alpha |R
Zone |
|

1 KISZ AB 22-31 29 3.57 7.999 3.03 8.004 Japan
2 KISZ AB 1-10 29 2.66 8.049 1.78 8.036 Kamchatka
3 ACSZ AB 16-25 29 1.71 5.349 1.22 4.882 Central Aleutian
4 ACSZ AB 22-31 29 0.75 5.117 0.64 5.099 Unimak
5 ACSZ AB 50-59 29 1.10 6.899 1.59 6.662 Canada
6 ACSZ AB 56-65 29 0.87 7.416 0.92 6.681 Cascadia
7 CSSZ AB 1-10 29 0.32 11.717 0.25 17.448 Central American
8 CSSZ AB 41-50 29 0.29 12.299 0.29 12.289 Columbia-Ecuador
9 CSSzZ AB 86-95 29 0.77 16.133 0.72 16.085 Chile
10 CsSSz AB100-109 29 2.25 16.899 2.13 16.373 Southern Chile
11 NTSZ AB 20-29 29 0.59 7.950 0.62 10.665 Tonga
12 NTSsz AB 30-39 29 2.37 5.867 2.32 5.869 Northern Tonga
13 NVSZ AB 28-37 29 1.04 8.033 1.01 8.033 Vanuatu
14 MOSzZz AB 1-10 29 1.11 8.300 1.07 8.327 Manus
15 NGSZz AB 3-12 29 0.69 14.133 0.23 9.948 New Guinea
16 EPSZ AB 6-15 29 1.90 11.767 1.52 11.774 East Philippines
17 RNSZ AB 12-21 29 0.89 10.566 0.73 10.569 Nankai
1

[y
o0}

KISZ AB 32-41 29 2.34 9.200 .65 8.288 1Izu
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Appendix A.

The following appendix lists the input files for Keauhou developed in 2011.

A1l. Reference model *.in file for Keauhou , Hawaii for MOST version 4.0

A.
0.001 Minimum amplitude of input offshore wave (m):
1 Input minimum depth for offshore (m)

0.1 Input"dryland" depth for inundation (m)
0.0009 Input friction coefficient (n**2)

2 Number of grids

2 Interpolation domain for outer boundary
2 inner boundary
RA_hawaii_36s_20070806.nc
RB_kawaihae_B6s_20070806.nc

1

3 Input time step (sec)

9600 Input amount of steps

0 COntunue after input stops

20 Input number of steps between snapshots

1 saving inner boundaries every n-th timestep
1 ..Saving grid every n-th node, n=

/

/home/tg23/data/tang/store_c2 /pacific_prop_db/2003_Hokkaido/sim_src/

B

0.002 Minimum amplitude of input offshore wave (m):
-300 Input minimum depth for offshore (m)
0.1 Input"dryland" depth for inundation (m)
0.0009 Input friction coefficient (n**2)

2 Number of grids

2 Interpolation domain for outer boundary
2 inner boundary
RB_kawaihae_B6s_20070806.nc
RC_keauhou_10m.nc

1

0.45 Input time step (sec)

64000 Input amount of steps

0 COntunue after input stops

133 Input number of steps between snapshots
1 saving inner boundaries every n-th timestep
..Saving grid every n-th node, n=

1
/
/

C

0.002 Minimum amplitude of input offshore wave (m):
-300 Input minimum depth for offshore (m)

0.1 Input"dryland" depth for inundation (m)

0.0009 Input friction coefficient (n**2)
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1 Number of grids

2 Interpolation domain for outer boundary
2 inner boundary

RC_keauhou_10m.nc

2

0.15  Input time step (sec)

192000 Input amount of steps

0 COntunue after input stops

400 Input number of steps between snapshots
1 saving inner boundaries every n-th timestep
..Saving grid every n-th node, n=

1
/
/

A2. Forecast model *.in file for Keauhou, Hawaii for MOST version 2.0

0.0001 Minimum amplitude of input offshore wave (m):

1 Input minimum depth for offshore (m)
0.1 Input"dryland" depth for inundation (m)
0.000625 Input friction coefficient (n**2)

1 runup flag for grids A and B (1=yes,0=no)
300.0 blowup limit

0.85 Inputtime step (sec)

21176 Input amount of steps

13 Compute "A" arrays every n-th time step, n=
1 Compute "B" arrays every n-th time step, n=
26 Input number of steps between snapshots

1  ..Starting from

1 ..Saving grid every n-th node, n=

hawaii_2min_20070806.asc.s.c

FB_keauhou_6s2 20110602.most

FC_Keauhou_1s3 20110512.c
/home/tg23/data/tang/src_nc/src_sim_test/hawa/
A/

1111

1

176 183 keauhou 204.03740740 19.5616666 depth m: 3.60
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Figure 2: Forecast model setups for several forecast sites in Hawaii: (a) 2-arc-min (~3600m) regional, (b) 12-18-arc-sec (~360-540m) intermediate
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Figure 3: An aerial photo of Keauhou (Image curtesy tp://wW.soest.hawaii.edu/coasts
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203.98°E

Figure 8: Grid setup of the Keauhou reference model with resolutions of (a) 36” (1080m),
(b) 6” (180m),(c) 2” (60m) and (d) 1/3” (10m). L1, nested grid boundary; ® Keauhou
warning point.
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Figure 9: Grid setup of the Lahaina forecast model with resolutions of (a) 120” (3600m),
(b) 6” (180m) and (c) 1” (30m). [, nested grid boundary; ®, Keauhou warning point at
204.03740740°E, 19.5616666°N, water depth of 3.5 m.
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Figure 11: (1-2) Maximum sea surface elevation and current speed computed by the Keauhou
reference and forecast models for the (1) 1946 Unimak and (2) 1952 Kamchtka tsunamis.
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Figure 11 (Continued): (3-4) Computed maximum sea surface elevation and current speed by
the Keauhou reference and forecast models for the (3) 1957 Andreanov and (4) 1960 Chile
tsunamis.
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Figure 11 (Continued): (5-6) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for the (5) 1964 Alaska and (6) 1994 Kuril Islands
tsunamis.
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Figure 11 (Continued): (7-8) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for the (7) 1996 Andreanov and (8) 2001 Peru tsunamis.
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Figure 11 (Continued): (9-10) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for the (9) 2003 Hokkaido and (11) 2003 Rat Island
tsunamis.
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Figure 11 (Continued): (11-12) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for the (11) 2006 Tonga and (12) 2006 Kuril Islands
tsunamis.
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Figure 11 (Continued): (13-14) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for the (13) 2007 Kuril Islands and (14) 2007 Peru

tsunamis.
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Figure 11 (Continued): (15-16) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for the (15) 2009 Samoa and 2010 Chile tsunamis

46



(m) at ref. C-grid (17d) U (m/s) at ref. C-grid

(m/s) at ref. B-grid (79 Mrmax
19.66

20110311 (17a) v (m) at ref. B-grid (17B) U max

max

19.66
19.64 19.64
19.62 19.62
19.6 19.6
19.58 19.58
19.56 19.56
19.54 19.54

19.52 19.52

195 . . . . . . .
203 2035 204 2045 205 203 2035 204 2045 205 20398 20402 204.06 20398 20402 20406
(17e) Minax (m) at forecast B-grid (17f) Umax (m/s) at forecast B-grid (179) Minax (m) at forecast C-grid (17h) Umax (m/s) at forecast C-grid
203 203 19.61 RO 19.61 ﬂ% :
20.2 202 ‘ 2
20.1 20.1 19.6 19.6
1.5
20 20 19.59 19.59
19.9 19.9
19.8 19.8 19.58 19.58 1
19.7 19.7
19.57 Q\ 19.57 05
19.6 19.6
19.5 195 19.56 19.56 0
19.4 19.4 ‘0\
19.55 55

. 19. b
203.9 204.1 203.9 204.1 204.02 204.04 204.02 204.04

Figure 11 (Continued): (17) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for the 2011 Japan tsunamis
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Figure 12: Modeled time series of wave amplitudes at Keauhou warning point for the
eighteen simulated magnitude 9.3 tsunamis.
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Figure 13: (1-2) Computed maximum sea surface elevation and speed by the Keauhou
reference and forecast models for simulated Mw 9.3 (1) Japan and (2) Kamchatka tsunamis.
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Figure 13 (Continued): (3-4) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for simulated Mw 9.3 (3) Central Aleutian and (4)
Unimak tsunamis.
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Figure 13 (Continued): (5-6) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for simulated Mw 9.3 (5) Canada and (6) Cascadia
tsunamis.
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Figure 13 (Continued): (7-8) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for simulated Mw 9.3 (7) Central American and (8)
Columbia-Ecuador tsunamis.
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Figure 13 (Continued): (9-10) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for simulated Mw 9.3 (9) Chile and (10) Southern Chile
tsunamis.
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Figure 13 (Continued): (11-12) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for simulated Mw 9.3 (11) Tonga and (12) Northern
Tonga tsunamis.
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Figure 13 (Continued): (13-14) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for simulated Mw 9.3 (13) Vanuatu and (14) Manus
tsunamis.
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Figure 13 (Continued): (15-16) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for simulated Mw 9.3 (15) New Guinea and (16) East
Philippines tsunamis.
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Figure 13 (Continued): (17-18) Computed maximum sea surface elevation and speed by the
Keauhou reference and forecast models for simulated Mw 9.3 (17) Nankai and (18) Izu
tsunamis.
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Figure 14: Maximum amplitude at Keauhou Warning point computed by the reference model
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magnitude 9.3 simulated tsunamis.
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Appendix C SIFT Testing Report

Keauhou, Hawaii

Jean Newman



1.0 PURPOSE

Forecast models are tested with synthetic tsunami events covering a range of tsunami
source locations. Testing is also done with selected historical tsunami events when
available.

The purpose of forecast model testing is three-fold. The first objective is to assure that the
results obtained with NOAA’s tsunami forecast system, which has been released to the
Tsunami Warning Centers for operational use, are identical to those obtained by the
researcher during the development of the forecast model. The second objective is to test
the forecast model for consistency, accuracy, time efficiency, and quality of results over a
range of possible tsunami locations and magnitudes. The third objective is to identify
bugs and issues in need of resolution by the researcher who developed the Forecast
Model or by the forecast software development team before the next version release to
NOAA’s two Tsunami Warning Centers.

Local hardware and software applications, and tools familiar to the researcher(s), are used
to run the Method of Splitting Tsunamis (MOST) model during the forecast model
development. The test results presented in this report lend confidence that the model
performs as developed and produces the same results when initiated within the forecast
application in an operational setting as those produced by the researcher during the
forecast model development. The test results assure those who rely on the Keauhou
tsunami forecast model that consistent results are produced irrespective of system.



2.0 TESTING PROCEDURE

The general procedure for forecast model testing is to run a set of synthetic tsunami
scenarios and a selected set of historical tsunami events through the forecast system
application and compare the results with those obtained by the researcher during
the forecast model development and presented in the Tsunami Forecast Model
Report. Specific steps taken to test the model include:

1. Identification of testing scenarios, including the standard set of synthetic events,

appropriate historical events, and customized synthetic scenarios that may have
been used by the researcher(s) in developing the forecast model.

2. Creation of new events to represent customized synthetic scenarios used by the
researcher(s) in developing the forecast model, if any.

3. Submission of test model runs with the forecast system, and export of the results
from A, B, and C grids, along with time series.

4. Recording applicable metadata, including the specific version of the forecast
system used for testing.

5. Examination of forecast model results from the forecast system for instabilities
in both time series and plot results.

6. Comparison of forecast model results obtained through the forecast system with
those obtained during the forecast model development.

7. Summarization of results with specific mention of quality, consistency, and time
efficiency.

8. Reporting of issues identified to modeler and forecast software development
team.

9. Retesting the forecast models in the forecast system when reported issues have
been addressed or explained.

Synthetic model runs were tested on a DELL PowerEdge R510 computer equipped
with two Xeon E5670 processors at 2.93 Ghz, each with 12 MBytes of cache and
32GB memory. The processors are hex core and support hyperthreading, resulting
in the computer performing as a 24 processor core machine. Additionally, the
testing computer supports 10 Gigabit Ethernet for fast network connections. This
computer configuration is similar or the same as the configurations of the
computers installed at the Tsunami Warning Centers so the compute times should
only vary slightly.



Results

The Keauhou forecast model was tested with NOAA’s tsunami forecast system

version 3.2. The propagation databased used during development was dated in
2011.

The Keauhou, Hawaii forecast model was tested with four synthetic scenarios and
one historical tsunami event. Test results from the forecast system and comparisons
with the results obtained during the forecast model development are shown
numerically in Table C1 and graphically in Figures C1 to C5. The results show that
the forecast model is stable and robust, with consistent and high quality results
across geographically distributed tsunami sources and mega-event tsunami
magnitudes. The model run time (wall clock time) was under 21 minutes for 5 hours
of simulation time, and under 17 minutes for 4 hours. This run time is above the 10
minute run time for 4 hours of simulation time that satisfies time efficiency
requirements.

Four synthetic events were run on the Keauhou forecast model. The modeled
scenarios were stable for all cases tested, with no instabilities or ringing. Results
show that the largest modeled height was 300.7 cm and originated in the
Kamchatka-Yap-Mariana-Izu-Bonin (KISZ 22-31) source. Amplitudes greater than
100 cm were recorded for 2 out of 4 test sources. The smallest signal of 71.5 cm was
recorded at the Central and South America (CSSZ 86-95) source. Direct
comparisons, of output from the forecast tool with results of both the historical
event (Tohoku 2011) and available development synthetic events, demonstrated
that the wave pattern were similar in shape, pattern and amplitude.



Table C1. Table of maximum and minimum amplitudes (cm) at the Keauhou, Hawaii warning point for synthetic and historical events tested using SIFT 3.2
and obtained during development.

Scenario Source Zone Tsunami Source a SIFT Max (cm) | Developmen | SIFT Min (cm) | Development
Name [m] t Max (cm) Min (cm)
Mega-tsunami Scenarios

KISZ 22-31 Kamchatka-Yap-Mariana-Izu- A22-A31,B22-B31 29

Bonin 300.7 303 -346.6 n/a
ASCZ 56-65 Aleutian-Alaska-Cascadia A56-A65, B56-B65 29 91.7 92 -96.2 n/a
CSSZ 86-95 Central and South America A86-A95, B86-B95 29 71.5 72 -81.3 n/a
NTSZ 30-39 New Zealand-Kermadec-Tonga A30-A39, B30-B39 29 233.9 232 -270.3 n/a

Historical Events

Tohoku 2011 | Kamchatka-Yap-Mariana-Izu- 4.66 b24 + 12.23 b25+26.31 87.0 87 -101.4 -101

Bonin

a26+21.27 b26+22.75 a27

+4.98 b27
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Figure C1: Response of the Keauhou forecast model to synthetic scenario KISZ 22-31 (alpha=29). Maximum sea surface
elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d).
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Figure C2: Response of the Keauhou forecast model to synthetic scenario ACSZ 56-65 (alpha=29). Maximum sea surface
elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d).
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Figure C3: Response of the Keauhou forecast model to synthetic scenario CSSZ 86-95 (alpha=29). Maximum sea surface
elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d).
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Figure C4: Response of the Keauhou forecast model to synthetic scenario NTSZ 30-39 (alpha=29). Maximum sea surface
elevation for (a) A-grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d).
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Figure C5: Response of the Keauhou forecast model to the 2011 Tohoku tsunami. Maximum sea surface elevation for (a) A-
grid, b) B-grid, c) C-grid. Sea surface elevation time series at the C-grid warning point (d).



